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Predicting weed emergence is useful for planning weed management programs. Un-
fortunately, our ability to anticipate initial emergence and subsequent levels of emer-
gence from simple field observations or weather reports is often inadequate to achieve
optimal control. Weed emergence models may provide predictive tools that help
managers anticipate best management options and times and, thereby, improve weed
control. In this study, the germination characteristics of four annual grass weeds
(large crabgrass, goosegrass, green foxtail, and yellow foxtail) were investigated under
different temperatures and water stresses to calculate base temperatures and base
water potentials. These parameters were used to develop a mathematical model de-
scribing seedling emergence processes in terms of hydrothermal time. Hydrothermal
time describes seed germination in a single equation by considering the interaction
of soil water potential and soil temperature. The model, called WeedTurf, predicted
emergence with some accuracy, especially for large crabgrass (lowest efficiency index
[EF] value 0.95) and green foxtail (lowest EF value 0.91). These results suggest the
possibility of developing interactive computer software to determine the critical tim-
ing of weed removal and provide improved recommendations for herbicide appli-
cation timing.

Nomenclature: Goosegrass, Eleusine indica (L.) Gaertn. ELEIN; green foxtail, Se-
taria viridis (L.) Beauv. SETVI; large crabgrass, Digitaria sanguinalis (L.) Scop. DIG-
SA; yellow foxtail, Setaria glauca (L.) Beauv. SETLU.

Key words: Annual grass weeds, emergence prediction, hydrothermal time, turf.

Weeds are a major problem in turf and are often the result
of improper site preparation or inappropriate management.
Because weeds become established more readily in thin and
weak turf areas, the best defense against weeds is a vigorous
and healthy turf (Gaussoin and Martin 1994). In addition
to good weed control, one of the most important objectives
in turf management on golf courses is wise herbicide use,
which can be facilitated by predicting the time and extent
of weed emergence (Oriade and Forcella 1999). If we are
able to forecast when weeds emerge and the length of the
emergence period, we can optimize herbicide application
timing and rate. In particular, the prediction of weed emer-
gence can contribute to the timing of preemergence herbi-
cide applications to control annual summer grass weeds.
These chemicals are applied when the turf is growing and
well established but before weed emergence (Bingham et al.
1995). Improper timing is a major cause of poor weed con-
trol by these herbicides because they lose effectiveness if ap-
plied too early or after the weeds have emerged (Yelverton
1996). The prediction of weed emergence also can help to
detect very early and very late emerging plants that may
contribute to competition and seed return (Grundy 2002).
Therefore, development of accurate models to describe weed
emergence dynamics is useful for planning a weed manage-
ment program.

The first important step to create predictive models is to
understand the factors that control the pattern of seedling
emergence. The timing of weed emergence in turf will vary
according to the interaction of environmental conditions,
turf management, and weed species. The most important
environmental factor governing weed emergence is the com-

bination of soil temperature and soil water potential. De-
scription of seed germination is possible in a single equation
by considering only these two factors as ‘‘hydrothermal
time.’’ Hydrothermal time defines the interaction of water
potential above a threshold level, temperature above a
threshold level, plus time in a single function (Bradford
1995; Gummerson 1986). There are many examples where
this concept has been used with success in simple models of
emergence (Alvarado and Bradford 2002; Chang and Brad-
ford 1999; Dehal and Bradford 1994; Grundy et al. 2000;
Rowse and Finch-Savage 2003). For good emergence pre-
diction, monitoring daily microclimatic conditions near the
surface is necessary (Grundy 2002) but requires intensive
effort and is not always possible. Soil physical models may
be valuable tools for simulating daily soil temperature and
soil water content near the surface. Unfortunately, near-sur-
face microclimatic conditions are difficult to simulate cor-
rectly because of rapid changes in response to atmospheric
conditions. Flerchinger and Saxton (1989a, 1989b) devel-
oped the Simultaneous Heat and Water (SHAW) model to
simulate heat and water movement through plant cover, res-
idues, and soil. Pierson et al. (1992) compared SHAW re-
sults with those from two less complex models and found
that it provided the most accurate simulation of near-surface
soil temperatures. SHAW model output also was evaluated
by Flerchinger and Hardegree (2004), who suggested that
the model can be used to simulate soil temperature and
water conditions to predict potential seed germination re-
sponse for postfire revegetation in rangelands.

The objectives of this study were (1) to determine base
temperature and base water potential, (2) to evaluate the
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TABLE 1. Constant temperatures used to calculate the base tem-
perature.

Species Temperatures

C

Large crabgrass 4, 7, 10, 13, 16, 20, 24, 28
Green foxtail 6, 9, 12, 15, 18, 21, 24, 28
Goosegrass 4, 8, 12, 16, 20, 25, 28
Yellow foxtail 4, 7, 10, 13, 16, 20, 24, 28

SHAW model for its ability to predict daily soil temperature
and soil water content near the surface, and (3) to construct
and evaluate a model to describe the emergence of four
annual grass weeds: large crabgrass, goosegrass, green foxtail,
and yellow foxtail.

Materials and Methods

The first step in constructing the predictive model was to
calculate base temperature and base water potential for the
four species. These are the threshold levels beneath which
germination does not occur. After evaluation of the ability
of the SHAW model to predict daily soil temperature and
soil water content in the seed germination zone, base tem-
perature, and base water potential were incorporated into
an appropriate hydrothermal time model based on daily site-
specific values of soil temperature and water potential.

Base Temperature

Base temperatures were calculated with the method pro-
posed by Roché et al. (1997). Four replicates of 100 seeds
of each of the four species were incubated at a range of
constant temperatures (Table 1) in 10-cm-diam transparent
plastic containers with 50 ml of water. All seeds were ster-
ilized with sodium hypochlorite solution and rinsed with
deionized water before testing. Germination was recorded at
about 12-h intervals until no further germination occurred
for 4 d. The seeds were defined as germinated at the time
of visible radicle emergence.

The germination time course was analyzed using a logistic
function in the Bioassay97 program (Onofri 2001) and the
time necessary for 50% germination was estimated. A linear
regression, estimated using the bootstrap method (Efron
1979), provided the best fit of germination rate (reciprocal
of time to 50% germination) against incubation tempera-
ture. The base temperature was estimated as the intercept
of the regression line with the temperature axis.

Base Water Potential

Base water potentials were calculated according to Roman
et al. (1999). Polyethylene glycol (PEG 6000)1 was used to
create solutions with water potentials of 0, 20.03, 20.06,
20.2, 20.5, 21.1, 21.5, and 22.1 MPa, prepared accord-
ing to Wood et al. (1993). Four replicates of 100 seeds each
were placed in 10-cm-diam transparent plastic containers
lined with absorbent filter paper to which were added 50
ml of water or one of the seven PEG solutions. The con-
tainers were fitted with tight lids to prevent evaporation and
PEG-solution osmotic concentration was controlled daily
using a Freezing Point Osmometer.2 The containers were

placed in a seed germinator at a constant temperature of 25
C and photoperiod of 14:10 h (light–dark). Germinated
seeds were counted and removed at about 12-h intervals,
and the experiment was stopped after 4 d without germi-
nation. Germination was recorded at the time of visible rad-
icle emergence. Seeds that failed to germinate were washed
in deionized water to eliminate PEG residues and transferred
into dishes with water and optimal conditions for germi-
nation (constant temperature of 25 C for large crabgrass and
yellow foxtail and 35/21 C [day/night] for goosegrass). This
was done to verify the number of viable nondormant seeds
per treatment. Green foxtail seeds, harvested in 2002 for
this experiment, did not germinate because of dormancy and
determination of the base water potential of this species was
not possible.

The germination time course was modeled using a logistic
function in the Bioassay97 program (Onofri 2001) from
which the time of 50% germination was estimated. Base
water potential was calculated by regressing time to 50%
germination against water potential using the bootstrap
method (Efron 1979). The base water potential was esti-
mated as the intercept of the regression line with the water
potential axis. The base water potential of green foxtail was
found using an iterative process that consisted of changing
the base water potential in a hydrothermal time equation
until the simulation conformed satisfactorily with the ob-
served emergence data (Ekeleme et al. 2004). The best fit
appeared to occur when base water potential was 20.70
MPa. After calculation of base temperature and base water
potential, seed germination time was analyzed using the hy-
drothermal time concept.

Soil Temperature and Soil Water Potential
The SHAW model was tested using data collected at the

experimental farm of Padova University in Legnaro (north-
eastern Italy, 458129N, 118589E, 6 m above sea level) on
two different soils: a native loam soil (fulvi-calcaric Cam-
bisoil with a loamy texture in the upper 80 cm 41% sand,
46% silt, 13% clay; organic carbon 1.2%, pH 7.07) and a
sandy-loam soil (80% river sand [0.2 to 2 mm diameter]
and 20% native loam soil). Temperature was monitored be-
ginning on February 15, 2001, in the sandy-loam soil using
three thermocouples buried 2.5 cm deep and connected to
a data logger.3 The data logger took readings of temperature
every 30 s, then compressed into an average every 30 min.
Three other thermocouples were buried under the native
loam soil in 2003. Time domain reflectometry (TDR)4 was
used to measure moisture content in both soils once a day
beginning on February 15, 2002 (in the days with precipi-
tation or irrigation above 20 mm, soil moisture content was
not measured and the value corresponding to the saturated
soil moisture content was recorded). Two 30-cm-long steel
TDR probes were placed horizontally at a depth of 5 cm.
Soil water content was converted to water potential using
the soil water retention curve derived in the laboratory with
soil samples for both soil types (Bussoni and Mecella 1997).

Daily weather data (air temperature, wind speed, humid-
ity, precipitation, and solar radiation) are required input for
the SHAW model and were recorded at a weather station
located approximately 100 m from the site.

SHAW model simulation of soil water content and soil
temperature estimated under bare soil was compared with
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TABLE 2. Data sets of weed emergence used for fitting and for evaluating the model. When the set of emergence was used to calibrate
the model, it was specified whether measured or simulated soil parameters were used.

Soil type

Years

2001 2002 2003

Sandy-loam Calibration data set Calibration data set Calibration data set
Measured soil temperature Measured soil temperature Measured soil temperature
Simulated soil water content Measured soil water content Measured soil water content
(SHAW)

Loam Evaluation data set Evaluation data set Calibration data set
Measured soil temperature
Measured soil water content

FIGURE 1. Linear relation between incubation temperature (A) and germi-
nation rates (1/t50) and between water potential and germination rates (B)
for large crabgrass, goosegrass, yellow foxtail, and green foxtail. Base tem-
peratures and base water potentials for germination were estimated as the
intercept of the regression lines with the x axis. Estimated equations for
regression lines to extrapolate base temperatures are: y 5 20.76 1 0.06 3
(r2 5 0.89) for goosegrass; y 5 20.28 1 0.03 3 (r2 5 0.98) for large
crabgrass; y 5 20.15 1 0.02 3 (r2 5 0.97) for yellow foxtail; y 5 20.06
1 0.01 3 (r2 5 0.96) for green foxtail. Estimated equations for regression
lines to extrapolate base water potential are: y 5 0.66 1 0.55 3 (r2 5
0.84) for goosegrass; y 5 0.37 1 0.45 3 (r2 5 0.94) for large crabgrass;
y 5 0.21 1 0.30 3 (r2 5 0.94) for yellow foxtail. Estimated base temper-
atures and water potentials are reported in Table 3.

measured field data in sandy-loam (2001–2002–2003 tem-
perature and 2002–2003 water content) and native loam
(2003 temperature and 2002–2003 water content) soils us-
ing the model efficiency index (EF) (Loague and Green
1991) and mean bias error (MBE) (Willmott 1982). The
model EF is calculated as:

n n
2 2¯(O 2 O) 2 (P 2 O )O Oi i i

i51 i51EF 5 [1]n
2¯(O 2 O)O i

i51

where Pi is the simulated value, Oi the measured value, and
Ō the mean of measured value. The value of EF can range
from 1 downward. An EF value of 1 would mean that the
model produced exact predictions. The MBE is related to
magnitude of values under investigation and is an indication
of the average deviation of the predicted from the measured
values. It is calculated as:

N1
MBE 5 (P 2 O ) [2]O i iN i51

where N is the number of observations. A negative MBE
occurs when the model underestimated the observed values
(i.e., when predictions are smaller in value than observa-
tions).

Monitoring of Seedling Emergence

To evaluate model performance in predicting cumulative
relative seedling emergence, the timing of seedling emer-
gence of large crabgrass, goosegrass, green foxtail, and yellow
foxtail was studied from 2001 to 2003 in the native loam
soil and in the sandy-loam soil. Turf, comprised 75% rye-
grass (Lolium perenne L. ‘Barsportivo’ and ‘Brightstar’) and
25% bluegrass (Poa pratensis L. ‘Midnight’ and ‘Bartitia’),
covered both soils. The turf was mowed every 7 to 10 d to
3 cm and fertilized and irrigated when necessary to prevent
any signs of stress.

Mature seeds of the four weed species were harvested each
year in October from natural populations growing on the
farm. In November of each year, using a tubular soil sam-
pler, 88 soil cores (1 cm in diameter and 2.5 cm deep) were
taken in an area of 30 by 120 cm. The spatial arrangement
of the cores was that of a lattice with five rows separated
from one another by 7 cm, and cores were spaced at 7 cm
within each row. Thus, the first, third, and fifth rows had
18 cores each; and the second and fourth rows each had 17
cores. In these areas, the grass had been eliminated with
glufosinate to simulate turf that was weak or absent and
that favored weed emergence. Then, using funnels, the weed
seeds were sown into the small holes to achieve a density of
2,500 seeds m22. Emerged seedlings were counted and re-
moved twice weekly throughout the emergence period.

Hydrothermal Time and Cumulative Seedling
Emergence

The modeling approach was based on concepts developed
by Forcella (1998). This model, called WeedCast (Archer et
al. 2001), predicts the rate of weed emergence in arable soil.
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TABLE 3. Parameters and input variables of the hydrothermal time model (WeedTurf ) used to simulate weed emergence. Numbers in
parentheses represent the standard errors of calculated base temperatures (Tb) and base water potentials (Cb).

Species Tb Cb To Kt a b

C MPa C

Large crabgrass 8.4 (1.07) 20.83 (0.255) 26 0.50 10.1 0.008
Green foxtail 6.1 (1.51) 20.70 (—) 26 0.30 6.9 0.006
Goosegrass 12.6 (0.64) 21.21 (0.480) 26 0.60 6.2 0.008
Yellow foxtail 8.3 (0.75) 20.69 (0.017) 25 0.13 4.3 0.008

FIGURE 2. Simulated (solid line) vs. measured (dotted line) daily soil tem-
peratures during the germination period at a depth of 2.5 cm under bare
sandy-loam soil in 2001 (A), 2002 (B), and 2003 (C), and in 2003 under
loam soil (D).

FIGURE 3. Simulated (solid line) versus measured (dotted line) daily soil
water content during the germination period at a depth of 2.5 cm under
bare sandy-loam soil in 2002 (A) and 2003 (B), and in under loam soil in
2002 (C) and 2003 (D).

The basic concept of the WeedCast model is that seeds of
all species accumulate hydrothermal time according to the
soil temperature only when the soil water potential is above
a base value. Soil Growing Degree Days (SGDDi) are a
combination of soil temperature and soil water potential and
are calculated as:

SGDD 5 n 3 max(Ts 2 T , 0) 1 SGDDi i b i21 [3]

where n 5 0 when Csi # Cb, n 5 1 when Csi . Cb, Tsi
is the average daily soil temperature at 2.5-cm depth, Tb

and Cb are the base temperature and water potential thresh-
olds for each weed species, and Csi is the average daily soil
water potential at 5-cm depth. Models that predict weed
germination in arable soils usually accumulate temperature
from the date of soil cultivation. In turf, no sowing date is
available from which to start accumulation of SGDD, so
the first day of the year was used (January 1).

Cumulative relative seedling emergence (CRSE) is ex-
pressed by a Gompertz function, as follows:
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TABLE 4. Model efficiency index (EF), mean bias error (MBE), and coefficient of the linear regression (m) between observed and simulated
data. A comparison between the emergence simulations of WeedTurf obtained using measured soil temperature and water content and
using the parameters estimated by the Simultaneous Heat and Water (SHAW) model (calibration data set).

Species Soil type Year

WeedTurf

EF MBE m

WeedTurf 1 SHAW

EF MBE m

% %

Large crabgrass Sandy-loam 2001 0.99 0.4 0.97 0.96 24.4 1.00
Sandy-loam 2002 0.96 5.0 0.96 0.98 21.0 1.10
Sandy-loam 2003 0.98 21.8 0.98 0.99 20.6 1.01
Loam 2003 0.99 20.2 0.96 0.96 3.9 0.88

Green foxtail Sandy-loam 2001 0.96 22.0 1.03 0.87 25.4 1.06
Sandy-loam 2002 0.93 7.6 1.01 0.97 20.3 1.03
Sandy-loam 2003 0.98 0.7 1.00 0.97 21.8 1.07
Loam 2003 0.98 20.8 1.00 0.95 6.4 0.87

Goosegrass Sandy-loam 2001 0.97 23.1 0.97 0.88 210.8 0.79
Sandy-loam 2002 0.96 3.6 0.93 0.98 24.0 1.00
Sandy-loam 2003 0.97 20.5 1.02 0.97 0.1 0.88
Loam 2003 0.99 0.3 0.97 0.99 0.9 0.99

Yellow foxtail Sandy-loam 2001 0.77 10.4 0.76 0.88 6.7 0.83
Sandy-loam 2002 0.96 22.4 0.91 0.80 29.1 0.87
Sandy-loam 2003 0.89 25.5 0.97 0.92 24.8 0.98
Loam 2003 0.99 0.1 0.91 0.94 5.3 0.80

CRSE 5 100 exp(2a exp(2b SGDD)) [4]

where a represents a SGDD lag before emergence starts and
b represents the rate of increase of emergence once it is
initiated. The Gompertz equation is a standard and flexible
function often used to describe the processes of germination
and emergence (Forcella 1998).

Application of this model to our emergence data showed
the model’s inability to predict the germination rate during
periods when temperatures were above an optimum level
(data not shown). Therefore, modification of the hydro-
thermal time model was necessary so that it could describe
the germination rate reduction and nongermination that oc-
curred at supraoptimal temperatures. Bradford (2002) ob-
served that the decrease in germination rates at supraoptimal
temperature was because of an increase in the Cb threshold
for germination as temperature rose above the optimum
(To). In other words, the Cb values increased linearly (be-
came more positive) until it reached 0 MPa at a temperature
defined as the ceiling temperature (maximum threshold
temperature at which germination is prevented). Conse-
quently, Equation 1 was modified as suggested by Bradford
(2002) so that, when Tsi , To: n 5 0 when Csi # Cb, n
5 1 when Csi . Cb; and when Tsi . To: n 5 0 when Ci
# Cb 1 Kt (Tsi 2 To), n 5 1 when Ci . Cb 1 Kt (Tsi 2
To); To is the optimum temperature and Kt is the slope of
the relationship between Tsi and Cb in the supraoptimal
temperature range.

For modifying the equation, the values of To and Kt were
systematically varied in an iterative fashion until the best
simulations were obtained for each species. Initially, hydro-
thermal time was recalculated for different values of To and
with Kt 5 0, then Kt was varied incrementally to find the
combination between the values of Kt and To giving the
best simulation. The data used to estimate these parameters
and a and b values of the Gompertz function were soil tem-
perature, soil water content (converted to water potential),
and the emergence sequences recorded from 2001 to 2003
in sandy-loam soil and 2003 in native loam soil (calibration

data set) (Table 2). Given that no measured data of soil
water content were available in 2001 in the sandy-loam soil,
the SHAW model simulation was used to replace the miss-
ing data of soil water content for the estimation of a and b
coefficients of the Gompertz function. The model based on
these modified functions henceforth will be called
‘‘WeedTurf.’’

To evaluate model performance, simulated emergence
from WeedTurf was compared with observed emergence
data obtained in the native loam soil from 2001 to 2002
(evaluation data set) using the model EF (Loague and Green
1991), the MBE (Willmott 1982), and the coefficient of
the linear regression (m) between observed and simulated
data.

Results and Discussion

Base Temperature and Base Water Potential
Base-temperature estimates made by extrapolating the lin-

ear relationship between germination rate and incubation
temperature were very similar for large crabgrass and yellow
foxtail (Figure 1; Table 3). Green foxtail was able to ger-
minate at a lower temperature than the other species. As
expected, the late-spring emerging goosegrass required high-
er temperatures to begin accumulating the growing degree
days needed for germination.

All species showed high sensitivity to water stress. In con-
trast to the WeedCast model that uses 25 MPa as base water
potential (averaged over the top 5 cm of soil) for yellow
foxtail, this species was very sensitive to water stress with a
calculated base water potential of 20.69 MPa (Figure 1;
Table 3). The moisture threshold level of large crabgrass was
20.83 MPa, whereas Forcella et al. (2000) estimated a base
water potential of 20.5 MPa for this species. Goosegrass
did not germinate if water potential was less than 21.21
MPa. Using seeds collected from the west coast of peninsular
Malaysia, Ismail et al. (2002) found that goosegrass germi-
nation was inhibited by a water potential of 20.80 MPa.
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TABLE 5. Model efficiency index (EF), mean bias error (MBE), and
coefficient of the linear regression (m) between observed and sim-
ulated data (evaluation data set).

Species
Soil
type Year

WeedTurf 1 SHAWa

EF MBE m

%

Large crabgrass Loam 2001 0.98 3.2 0.93
Loam 2002 0.95 4.6 1.01

Green foxtail Loam 2001 0.94 4.9 0.93
Loam 2002 0.91 8.1 0.96

Goosegrass Loam 2001 0.81 212.7 1.08
Loam 2002 0.96 25.0 0.98

Yellow foxtail Loam 2001 0.96 1.5 0.90
Loam 2002 0.96 22.2 0.90

a Abbreviation: SHAW, Simultaneous Heat and Water.

These disparities are not surprising because seeds of the same
species collected in locations with different climates, such as
Italy, Malaysia, and the United States, may differ in their
response to water stress, as occurred with accessions of green
foxtail from different states in the United States in response
to temperature (Forcella et al. 2000). We do not know at
this time whether variability in laboratory-generated results
of base temperatures and base water potentials are associated
with variability of responses of seeds to these same factors
in field settings. However, the results reported by Grundy
et al. (2003) for common lambsquarters (Chenopodium al-
bum L.) emergence timing are encouraging; that is, seeds
originating from disparate geographic locations responded
similarly to soil microclimate. Possibly, various dormancy
and maternal environment effects could be specific to lo-
cations and populations, but overwinter stratification, etc.,
may alleviate these influences and result in homogeneity of
emergence timing responses among populations within a
species.

Evaluation of the SHAW Model

The SHAW model simulation of soil temperature in 2001
in sandy-loam soil and in 2003 in both soil types was sat-
isfactory with EF values ranging from 0.97 to 0.98 and
MBE of 0.13 and 0.52 C for the sandy-loam soil in 2001
and 2003, respectively, and 20.12 C for the loam soil (Fig-
ure 2). Near-surface soil temperature (Figure 2) was under-
predicted in sandy-loam soil throughout the emergence pe-
riod (from March to July) in 2002, with an MBE of 21.60
C (EF 5 0.87). The larger discrepancies between measured
and predicted temperatures occurred when temperatures be-
gan to rise after mid-April.

Water content tended to be underpredicted in sandy-loam
soil, with MBE values of 20.025 and 20.017 m3 m23 in
2002 and 2003, respectively. The EF values ranged from
0.65 to 0.71. The simulation of soil water content in loam
had an EF value of 0.82 in 2002 with MBE of 20.008 m3

m23 and EF of 0.71 in 2003 with MBE of 20.022 m3 m23

(Figure 3). The errors associated with SHAW simulations
were remarkably small considering the cross-continent sep-
aration between model development and application. EF
was always closer to 1 than 0, and MBE always was , 10%
of the range of observed values.

Modelling Emergence

WeedTurf Calibration

Base temperatures and base water potentials determined
from growth chamber experiments (as described previously)
were used in the WeedTurf model to predict emergence in
the field. Table 3 shows all the parameters and input vari-
ables found by systematically varying To and Kt and repeat-
ing the calculation of a and b values of the Gompertz func-
tion until the best fit least squares regression was obtained.
The resulting optimum temperatures (To) were 25 and 26
C. These values were essentially identical to those reported
previously for these species (Baskin and Baskin 1998; Ismail
et al. 2002; King and Oliver 1994; Swanton et al. 1999).
Table 4 shows the EF, MBE, and regression coefficients for
these calibration runs.

Use of SHAW Model Output for Simulating Emergence

Accuracy of simulated emergence from WeedTurf using
measured soil temperature and water potential and from
WeedTurf using soil parameters simulated by SHAW model
is shown in Table 4. In both cases, emergence of large crab-
grass was simulated by the model for all 3 yr on sandy-loam
soil and loam soil in 2003 with EF values exceeding 0.96.
In the sandy-loam soil in 2002, the WeedTurf prediction of
the onset of large crabgrass emergence was better using mea-
sured soil temperature and water potential, but the complete
germination time course in the subsequent period was pre-
dicted accurately using SHAW model output. Simulated
green foxtail emergence also was satisfactory in both soil
types and over all years. The lowest EF value of 0.87 was
in 2001 using temperature and water potential from the
SHAW model (Table 4).

The WeedTurf model predicted the time courses of goose-
grass and yellow foxtail emergence in the calibration data
sets less well. Goosegrass emergence predictions were rea-
sonable when observed temperature and water potential data
were used but underestimated and delayed by the model
using SHAW model output, with MBE values of 210.8 and
24.0%, respectively (Table 4). In this case, the disparity
between model predictions and real emergence data might
be reduced by improving the prediction of soil temperature
and water potential made by the SHAW model, especially
across years.

Yellow foxtail emergence was overestimated when SHAW
model output was used for 2001 in sandy-loam soil (MBE
5 6.7%) and underestimated in 2002 and 2003 (MBE 5
29.1 and 24.8%, respectively). Using observed soil tem-
perature and soil water potential, the simulation improved
in 2002 in sandy-loam soil and in 2003 in loam soil but
not in 2001 and 2003 in sandy-loam soil (Table 4). There-
fore, the SHAW model output is only one of the causes of
WeedTurf ’s poor prediction of yellow foxtail emergence.

Independent Evaluation of WeedTurf

WeedTurf simulations of emergence in the 2001 and
2002 native loam soil (evaluation data set) resulted in EF
values ranging from 0.81 to 0.98 (Table 5). Predicted emer-
gence of large crabgrass, green and yellow foxtail resulted in
an EF better than 0.91. Goosegrass emergence was under-
estimated, especially in 2001, where the lowest EF value
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FIGURE 4. Large crabgrass (A), green foxtail (B), goosegrass (C), and yellow foxtail (D) seedling emergence at Legnaro in loam soil fitted using the WeedTurf
model with Simultaneous Heat and Water (solid black line) and observed emergences (m) (evaluation data set).
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FIGURE 5. Effect of overestimating soil temperature on cumulative emer-
gence of two hypothetical species with base temperature of 0 C (A) and 10
C (B). If the temperature is overestimated throughout the emergence period
(in this example, the real soil temperature is 3 C lower than estimated soil
temperature), then simulated cumulative emergence is greater than mea-
sured emergence in both species but markedly greater for the species with
the higher base temperature. In this example, the Gompertz function was
the same in both simulations, only Tb in the calculation of hydrothermal
time was changed (no water stress was considered: Ci . Cb).

(0.81) and MBE (212.7%) occurred (Figure 4C). The pre-
dicted emergence of yellow foxtail in loam soil showed high
EF values in both years, even if the model was unable to
describe emergence accurately during the initial period of
the growing season (February to April) (Figure 4D). In
2002, the model overestimated the green foxtail emergence
especially from May to June (MBE of 8.1%) and this dis-
parity lowered the EF value to 0.91.

On the basis of these results, we concluded that the
WeedTurf model can be used to predict large crabgrass and
green foxtail emergence, whereas prediction of goosegrass
and yellow foxtail emergence needs to be improved. Impor-
tantly, the SHAW model simulation errors showed more
negative influence on predicting the emergence pattern of
goosegrass than crabgrass and green foxtail. The cause of
this different response may be the higher base temperature
of goosegrass. If the soil temperature is over- or underpre-
dicted, the simulated emergence is lower or greater than
measured emergence and this difference is greater for the

species with the higher base temperature (an example is re-
ported in Figure 5).

The case of yellow foxtail is different because calibration
of the SHAW model will not necessarily improve predicted
emergence. In particular, the emergence model was unable
to accurately predict the onset of emergence, which is the
critical period for implementing weed control practices, es-
pecially the use of preemergence herbicides in turf. There-
fore, a clear need exists to review and refine the model for
this species.

Further research will determine the utility of the
WeedTurf model as a support for management decisions of
weed control in turf. Similar types of software to predict
weed emergence in arable fields are being used in various
regions of the United States and Australia (Archer et al.
2002; Walsh et al. 2002), and the opinions of farmers and
crop advisors on the programs are positive.

WeedTurf has demonstrated the ability to predict weed
emergence with some accuracy. The current objective is to
make these models accessible to turf managers and gardeners
through interactive computer software (through the World
Wide Web, as well as information by radio, television, and
other media). Such software would help users determine the
critical timing of weed removal and provide greatly en-
hanced recommendations for the application timing of pre-
emergence and postemergence herbicides. Through im-
proved and more effectively timed herbicide applications,
rates, soil retention times, and probabilities of off-site trans-
port can be reduced and environmental quality enhanced.
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Acknowledgments
This research was supported by the Italian ‘‘Ministero per le

Politiche Agricole e Forestali’’ in the national program ‘‘Inerbimenti
e tappeti erbosi per la valorizzazione agricola, ricreativa e sportiva
del territorio’’ (paper n. 102) and, in part, by the Italian National
Research Council (CNR) within the activities of the Institute of
Agro-Environmental and Forest Biology (IBAF), Weed Science Di-
vision of Legnaro (Padova).

Literature Cited
Alvarado, V. and K. J. Bradford. 2002. A hydrothermal time model explains

the cardinal temperatures for seed germination. Plant Cell Environ.
25:1061–1069.

Archer, D. W., J. Eklund, M. Walsh, and F. Forcella. 2002. WEEDEM: a
user-friendly package for predicting annual ryegrass and wild radish
emergence. Pages 252–253 in Proceedings of the 13th Australian
Weeds Conference. Perth, Australia.

Archer, D. W., F. Forcella, J. J. Eklund, and J. Gunsolus. 2001. WeedCast
Version 2.0. www.morris.ars.usda.gov.

Baskin, C. C. and J. M. Baskin. 1998. Seeds: Ecology, Biogeography, and
Evolution of Dormancy and Germination. New York: Academic.

Bingham, S. W., W. J. Chism, and P. C. Bhowmik. 1995. Weed manage-
ment systems for turfgrass. Pages 603–665 in A. E. Smith, ed. Hand-
book of Weed Management Systems. New York: Marcel Dekker.



Masin et al.: A predictive model to control weeds in turf • 201

Bradford, K. J. 1995. Water relations in seed germination. Pages 351–396
in J. Kigel and G. Galili, eds. Seed Development and Germination.
New York: Marcel Dekker.

Bradford, K. J. 2002. Applications of hydrothermal time to quantifying
and modeling seed germination and dormancy. Weed Sci. 50:248–
260.

Bussoni, E. and G. Mecella. 1997. Ritenzione idrica. Pages 55–65 in M.
Pagliai, ed. Analisi fisica del suolo. Milano, Italy: Società italiana della
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